Chapter 8 Exam	Name:
MAT 1033C	Date:
Larson Book	Section:
Quadratic Equations (V6) Take Home	

You MUST show your work to receive full credit. This exam is worth 100 points. Each problem is worth 6 points unless otherwise specified. Good Luck!

1. Solve by factoring: $2 x^{2}-4 x=70$
2. Solve by completing the square: $x^{2}+16 x+7=0$
3. Solve using the quadratic formula: $7 x^{2}-3 x=-2$
4. Use Richard's formula to solve $x^{2}-10 x-12=0$
5. Using the discriminant, determine how many unique solutions each equation has and what type of solution(s) they are.

$$
-4 x^{2}+5 x+9=0
$$

6. The product of two consecutive odd integers is 22 less than 15 times the smaller integer. Find the integers.

Solve each equation using the method of your choice.

$$
\text { 7. } \quad 9(x-8)^{2}=36
$$

8. $27 x^{2}-49=0$
9. $-16 x=-x^{2}$
10. $3 x^{2}-2 x-4=0$
11. $x^{3}-4 x^{2}+4 x=0$
12. $x^{2}+69=0$
13. Let $y=-4(x-8)^{2}+3$
(a-f) 2 points each
a) Find the vertex of the parabola
b) Does this parabola open up or down?
c) Is this parabola "wide", "narrow", or "standard"?
d) Find its x-intercept(s)
e) Find its y-intercept
f) Graph this parabola
14. Let $y=3 x^{2}-5 x-10$
(a-f) 2 points each
g) Find the vertex of the parabola
h) Does this parabola open up or down?
i) Is this parabola "wide", "narrow", or "standard"?
j) Find its x-intercept(s)
k) Find its y-intercep \dagger
I) Graph this parabola

BONUS PROBLEM

 4 points1. Solve $-5 x^{2}-2 x=10$ using Richard's Formula.
